
SIAM J. MATRIX ANAL. APPL. c© 2013 Society for Industrial and Applied Mathematics
Vol. 34, No. 2, pp. 794–813

A SCHUR LOGARITHMIC ALGORITHM FOR FRACTIONAL
POWERS OF MATRICES∗

BRUNO IANNAZZO† AND CARLO MANASSE†

Abstract. We describe a recurrence method for computing primary pth roots of a matrix A with
a cost, in terms of elementary arithmetic operations and memory, which is logarithmic with respect
to p. When A is real and the primary root is real as well, the algorithm is based on the real Schur
form of A and uses real arithmetic. The numerical experiments confirm the good behavior of the
new algorithm in finite arithmetic. The case of arbitrary fractional powers of A is also considered.

Key words. matrix pth root, primary matrix function, Schur recurrence method, binary
powering technique, fractional power of a matrix

AMS subject classifications. 65F30, 15A15

DOI. 10.1137/120877398

1. Introduction. A pth root function in the set Ω ⊂ C is a function ϕ : Ω → C

such that ϕ(z)p = z. If Ω is the union of t connected components none of which
contain either 0 or a closed path around 0, then there exist exactly pt analytic pth
root functions in Ω.

Let A ∈ Cn×n be a nonsingular matrix whose spectrum is Ω = {λ1, . . . , λt}.
There are exactly pt pth root functions in Ω determined by the scalar pth roots of
any of the eigenvalues. Any such pth root function ϕ(z) can be uniquely extended
to a function analytic in an open neighborhood U of Ω and we can define the matrix
function

ϕ(A) :=
1

2πi

∮
γ

ϕ(z)(zI −A)−1dz,

where γ is a closed contour contained in U and surrounding the spectrum of A, while
I is the identity matrix.

Any such function ϕ(A) is said to be a primary matrix pth root of A and is a
solution of the equation Xp = A. The adjective primary is necessary since not every
solution of Xp = A arises as a function of A in the sense given above (consider the
equation X2 = I), and one likes to call the pth root of A any solution of Xp = A. A
solution of the equation Xp = A which is not primary is called the nonprimary matrix
pth root. We will discuss how to efficiently compute primary matrix roots, letting
alone nonprimary matrix roots, which are not suited for numerical computation.

If Ω = C\(−∞, 0], then one of the pth root functions deserves particular attention,
that is, the principal pth root function ϕ(z) = z1/p, which for any complex number z
chooses the unique pth root lying in the sector Sp = {z ∈ C \ {0} : |arg(z)| < π/p}.
If the matrix A has no nonpositive real eigenvalues, then we can define the principal
pth root A1/p of A, which in turn has eigenvalues in Sp. The principal pth root is the
one usually required in the applications.

∗Received by the editors May 15, 2012; accepted for publication (in revised form) by Chun-hua
Guo May 7, 2013; published electronically June 20, 2013.

http://www.siam.org/journals/simax/34-2/87739.html
†Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, 06123

Perugia, Italy (bruno.iannazzo@dmi.unipg.it, carlo.manasse@studenti.unipg.it).

794



A SCHUR ALGORITHM FOR POWERS OF MATRICES 795

When A ∈ Rn×n is nonsingular, with spectrum Ω = {λ1, . . . , λt}, some among
the primary roots are real, precisely those corresponding to the functions ϕ(z) such
that ϕ(z) = ϕ(z) for any z ∈ Ω [8]. In other words, the condition for a primary root
of a real matrix to be real is that the root of the real eigenvalues is real and that the
same determination is chosen for any couple of complex conjugate eigenvalues. We
call these functions real primary pth root functions. The principal pth root of a real
matrix, if it exists, is real [6, 7].

To compute the primary roots of a normal matrix, it is sufficient to compute the
eigendecomposition of A, say, A = QDQ∗, where Q is unitary and D is diagonal, and
get ϕ(A) = Qϕ(D)Q∗. However, this approach may give poor numerical results in the
nonnormal case, due to the possible ill-conditioning of the eigenvectors. Nevertheless,
there are certain relevant applications, where the matrix A is not necessarily normal
(see [8] and the references therein); moreover, one would like to have a general purpose
algorithm for the problem.

The existing efficient algorithms for computing primary roots of a generic matrix
can be divided into two classes: Schur recurrence algorithms, which get the roots by
a direct formula once the Schur form of A is computed [13, 2], and rational itera-
tion/approximation algorithms, whose core is a rational iteration converging to the
matrix roots [10, 4, 11, 3, 12] or one or more than one rational approximation such
as the Padé approximation [9].

A natural request from a numerical method is that its asymptotic computational
cost has a dependence on p less than or equal to log2 p, in terms of both memory and
number of arithmetic operations (ops) necessary to perform the computation. This
is because, for instance, computing a 2kth root of A should not cost much more than
computing k times a square root. Another desire is that a numerical method working
on real data performs the computation using only real arithmetic.

Rational iterations fulfill both conditions, while Padé algorithms use sometimes
complex arithmetics, but their cost does not depend on p. Concerning existing Schur
recurrence algorithms, their curse is the dependence on p: for the original method
of Smith [13] the dependence is quadratic, while for the update given by Greco and
Iannazzo [2] the dependence on p is linear.

The contribution of the paper is a new algorithm which updates the existing Schur
recurrence algorithms reducing the computational cost to be logarithmic in p leaving
unchanged its excellent numerical stability features. Moreover, the overall cost, for
moderate values of p, makes the algorithm cheaper than most existing algorithms.

Besides the computation of primary matrix roots, we consider also the computa-
tion of fractional powers of a matrix, that is, compute Aq/p, for p, q positive integers
with q < p. This is a special issue of the more general problem of computing Aα for
α ∈ (0, 1). (See [9] for an introduction to the numerical issues related to Aα.)

Let z = ρeiθ ∈ C \ {0} and α ∈ (0, 1); for any integer k, the function ϕk(z) :=
ραeiα(θ+2kπ) with ρα = eα log ρ is a determination of the function z to the power α.
Two determinations ϕk(z) and ϕh(z) coincide, namely, ραeiα(θ+2kπ) = ραeiα(θ+2hπ),
for any ρ and θ, if and only if α(k − h) is an integer. Thus, if α = q

p with p and
q relatively prime positive integers with q � p, then there are just p different deter-
minations corresponding to the pth roots of z raised to the power q, for instance,
ϕ0(z), . . . , ϕp−1(z). If α is irrational, then there are infinitely many determinations.

Let A ∈ Cn×n be a nonsingular matrix with spectrum Ω = {λ1, . . . , λt} and α be
as above; then one can define the primary powers to α of A as ϕ(A), where ϕ(z) is a
function which for each distinct eigenvalue λi of A coincides with a certain ϕki(λi). If



796 BRUNO IANNAZZO AND CARLO MANASSE

α is rational, namely, α = q
p , with p and q relatively prime, then there are tp primary

powers of A, corresponding to any choice of ϕk(z), while if α is irrational, then there
are infinitely many primary powers.

Let p, q be positive integers and A ∈ Cn×n be nonsingular. The primary powers
of A to q

p are solutions of the matrix equation Xp = Aq; in particular, they are

the primary pth roots of the matrix Aq. The primary powers of A to q
p can be

characterized also as the primary pth roots of the matrix A, raised to q. Notice that
there may exist solutions of the equation Xp = Aq which are nonprimary functions
of A. With the notation introduced above, we define the principal q

p th power of a

matrix A with no nonpositive real eigenvalues as Aq/p = (A1/p)q.
We will describe how the proposed Schur algorithm for primary matrix roots can

be used for computing primary fractional powers of a matrix.
The paper is organized as follows. In section 2 we discuss the Schur methods

reviewing the existing methods, namely, the method of Smith and the method of
Greco and Iannazzo, reviewed in sections 2.1 and 2.2, respectively. Then we present
the new algorithm in section 2.3 and we discuss the case of arbitrary powers of a matrix
in section 2.4. Some numerical tests are presented in section 3 and the conclusions
are drawn in the final section.

In the following, to simplify the statements and the proofs, we use the convention
that the sum

∑h
i=k ai for k > h is 0 and the product

∏h
i=k ai for k > h is 1. For

x ∈ R, we denote by �x� the largest integer less than or equal to x.
Given two matrices M and N we denote by M ⊗ N their Kronecker (tensor)

product and by vec(M) the vector obtained by stacking the columns of M . The
link between the Kronecker product and the vec operator is through the formula
vec(AXB) = (BT ⊗ A) vec(X), which yields the product of matrices as a matrix-
vector product; in this case we say that the product is written in Kronecker notation.

In the rest of the paper we use some properties of matrix functions of the type
f(A), namely, those obtained extending a scalar function f(z) to a square matrix A.
(See [7] for a treatise on the topic.) First, we use the fact that f(A) is a polynomial of
A. Second, if T is block upper triangular, then so is f(T ), and the diagonal blocks of
f(T ) are f(T11), . . . , f(Tσσ), where T11, . . . , Tσσ are the diagonal blocks of T . Finally,
for any invertible matrix M , it holds that f(MAM−1) = Mf(A)M−1; we call this
property the similarity invariance of matrix functions. The proof of these properties
can be found in [7].

2. Recurrence methods for primary matrix roots. Let A ∈ Cn×n be a
nonsingular matrix whose distinct eigenvalues are λ1, . . . , λt, and let ϕ(z) be a primary
pth root function defined on the spectrum of A. We describe and update the class of
recurrence methods for computing ϕ(A).

Recurrence methods are based on the fact that any primary rootX = ϕ(A) of A is
a polynomial of A. Thus, if Q is a unitary matrix such that T = Q∗AQ is block upper
triangular, then Y = Q∗XQ = Q∗ϕ(A)Q = ϕ(Q∗AQ) = ϕ(T ) is a primary root of T
with the same block upper triangular structure as T and the same eigenvalues as X .
The problem of computing ϕ(A) is thus reduced to the computation of ϕ(T ), which
is the unique solution of the equation Y p = T whose eigenvalues are ϕ(λ1), . . . , ϕ(λt).
The equation Y p = T is solved by a suitable recurrence.

The algorithms can be given for a block upper triangular matrix T with no re-
striction on the block sizes, but two cases are of major interest:

• T is upper triangular, obtained using the (complex) Schur normal form of A,
say, T = Q∗AQ, with Q unitary;



A SCHUR ALGORITHM FOR POWERS OF MATRICES 797

• T is upper quasi-triangular, namely, is a real and block upper triangular
matrix with diagonal blocks of size at most 2, obtained using the real Schur
normal form of A, when the latter has real entries, say, T = QTAQ, with Q
orthogonal; moreover, the required pth root function ϕ(T ) is real.

When the Schur form is used the method is called the Schur recurrence method or
just the Schur method.

In sections 2.1, 2.2, and 2.3 we will describe the main ideas of recurrence methods
in the real case for an upper quasi-triangular matrix T . In section 2.3.2 we will
discuss the generalizations to the complex and upper triangular case, together with
some specific instances.

The idea of computing a matrix function using the Schur form has been fruitfully
applied to the matrix square root by Björck and Hammarling [1] and specialized to the
real case by Higham [6]. The case of roots with indices greater than 2 was sketched
in the complex case by Björck and Hammarling [1], given in full detail by Smith [13],
and later updated by Greco and Iannazzo [2].

2.1. Smith’s method. Let T ∈ Rn×n be a σ×σ upper quasi-triangular matrix,
whose blocks are denoted by Tij , for i, j = 1, . . . , σ, and let ϕ(z) be a real pth root
function so that ϕ(T ) is real.

The method of Smith is based on the construction of the set {R(0), . . . , R(p−1)}
of matrices with the same block structure as T , such that R(k) = Y k+1, for k =
0, . . . , p− 1, so that R(0) = Y and R(p−1) = T . Using the recurrence R(k+1) = Y R(k)

for k = 0, . . . , p− 2, Smith deduces for i < j the formula

(2.1) Tij =

p−1∑
�=0

Y p−�−1
ii YijY

�
jj +

p−2∑
�=0

Y p−�−2
ii B̂

(�)
ij , B̂

(k)
ij =

j−1∑
�=i+1

Yi�R
(k)
�j ,

where R
(k)
ij is the block of R(k) with indices (i, j).

The blocks appearing in formula (2.1) besides Yij are blocks of the matrices R(k)

with indices (i, 
) for i � 
 < j or (
, j) for i < 
 � j; in other words they are on the
left of and below the position (i, j) in the matrices R(k). Assuming that all blocks

R
(k)
i� and R

(k)
�j , 
 = i+ 1, . . . , j − 1, are known, formula (2.1) becomes a linear matrix

equation from which we derive Yij .
This suggests the following strategy of computation: compute the blocks of Y

a block column at a time, from the diagonal block up to the first block row. For
example, for a matrix with three diagonal blocks the flow of computation is Y11 →
Y22 → Y12 → Y33 → Y23 → Y13. More precisely, for each block column j

• compute Yjj as the desired primary root of Tjj (using, for instance, a direct

formula) and then R
(k)
jj = YjjR

(k−1)
jj for k = 1, . . . , p− 2;

• for each row i < j, compute Yij using (2.1) and compute R
(k)
ij for k � 1 using

R
(k)
ij =

∑k
�=0 Y

k−�
ii YijY

�
jj +

∑k−1
�=0 Y k−1−�

ii B̂
(�)
ij .

The strategy used in the paper by Smith is to compute a block superdiagonal at a
time. It is equivalent to the one described here.

First, the diagonal blocks of Y must be computed. Recall that Y p
jj = Tjj for

j = 1, . . . , σ, and then Yjj is a pth root of Tjj and precisely ϕ(Tjj). If Yjj has
size one, then it is enough to apply ϕ(z) to the scalar Tjj ; if Yjj has size two and
eigenvalues θ ± iμ, then one can use the direct formula

(2.2) Yjj = ϕ(Tjj) = αI +
β

μ
(Tjj − θI),



798 BRUNO IANNAZZO AND CARLO MANASSE

where α + iβ = ϕ(θ + iμ). The blocks R
(k)
jj are computed using the recurrence

R
(k)
jj = YjjR

(k−1)
jj for k = 1, . . . , p− 2.

Second, for i < j, the matrix equation (2.1) is solved for Yij . Using Kronecker
notation, (2.1) can be transformed into a linear system

(2.3)

(
p−1∑
�=0

(Y T
jj )

� ⊗ Y p−�−1
ii

)
vec(Yij) = vec

(
Tij −

p−2∑
�=0

Y p−2−�
ii B̂

(�)
ij

)
,

whose matrix coefficient has size at most 4. It can be proved that the linear system
in (2.3) has a unique solution for each i < j (see [13] for a proof), so that we can
determine the matrix Yij .

If the principal pth root of T is required, then it is sufficient to choose the principal
pth root when the root of a diagonal block is computed, that is, to choose ϕ(Tjj) =

T
1/p
jj for each j.

The computational cost of the algorithm is quadratic in p; in fact the most costly

part, with respect to p, is the computation of R
(k)
ij , which, for each i, j, requires about∑p−2

k=1 3k = O(p2) multiplications of matrices of size at most 2. The total cost of
Smith’s algorithm is of O(n3p+ n2p2) ops, and some considerations on the backward
error suggest that it is backward stable [13].

With a minor modification, that is, computing R
(k)
ij using the formula R

(k+1)
ij =

YiiR
(k)
ij + YijR

(k)
jj + B̂

(k)
ij , the cost of Smith’s algorithm is easily lowered to O(n3p)

ops. However, the analysis of Smith would say nothing about the numerical stability
of this variant.

2.2. The method of Greco and Iannazzo. Greco and Iannazzo proposed in
[2] a modification of the Smith algorithm, observing that in order to get Y from T ,
it is not necessary to consider all powers Y k for k = 1, . . . , p but just a part of them
using the binary powering technique. As in section 2.1 we assume that T is upper
quasi-triangular and that the required pth root function is real.

Let p have t = �log2 p�+ 1 digits in its binary expansion; then we can write

(2.4) p = b12
t−1 + b22

t−2 + · · ·+ bt−12 + bt, b1 = 1,

with b1 = 1 and bi ∈ {0, 1} for i > 1, and

(2.5) p = 2c1 + 2c2 + · · ·+ 2cm , c1 > c2 > · · · > cm � 0,

where m is the number of nonzero binary digits and the set {c1, . . . , cm} contains the
positions of these nonzero digits in the binary expansion of p. Note that c1 = t− 1 =
�log2 p�.

For instance, with p = 23 we have b1 = 1, b2 = 0, b3 = 1, b4 = 1, b5 = 1, while
c1 = 4, c2 = 2, c3 = 1, c4 = 0. In order to get Y 23 = T , the algorithm of Smith
uses all the matrices Y k for k = 1, . . . , 22, and the idea of Greco and Iannazzo is to
consider a smaller number of powers of k, in fact, Y 23 = Y 16Y 4Y 2Y , and thus in
order to get Y 23, it is sufficient to form the six matrices Y 2, Y 4, Y 8, Y 16, Y 20, Y 22.

In the algorithm of Greco and Iannazzo the recursion is constructed through the
sequences

(2.6)

{
V (1) = I, V (2) = Y,

V (k) = V (k−1)V (k−1) = Y 2k−2

, k = 3, . . . , t+ 1,



A SCHUR ALGORITHM FOR POWERS OF MATRICES 799

and

(2.7)

{
W (1) = I,

W (k) = W (k−1)V (ck−1+2) = Y 2c1+2c2+···+2ck−1
, k = 2, . . . ,m+ 1.

It holds that W (2) = V (c1+2) = V (t+1) = Y 2c1 and W (m+1) = T . (Notice that the
relations (2.6) and (2.7) are slightly different from the ones appearing in the paper of
Greco and Iannazzo [2]; since the indices have been shifted by one, this choice makes
the implementation easier.)

Since T is upper quasi-triangular, all matrices V (k) and W (k) have the same
upper quasi-triangular structure as T . As in section 2.1, the diagonal blocks of Y
are computed directly, and (2.6) and (2.7) give the following recursions for the blocks
with indices (i, j) such that 1 � i < j � σ:

V
(k+1)
ij =

j∑
ξ=i

V
(k)
iξ V

(k)
ξj = V

(k)
ii V

(k)
ij + V

(k)
ij V

(k)
jj +B

(k)
ij , k = 2, . . . , t,

(2.8)

W
(k+1)
ij =

j∑
ξ=i

W
(k)
iξ V

(ck+2)
ξj = W

(k)
ii V

(ck+2)
ij +W

(k)
ij V

(ck+2)
jj + C

(k)
ij , k = 2, . . . ,m,

(2.9)

where

(2.10) B
(k)
ij =

j−1∑
ξ=i+1

V
(k)
iξ V

(k)
ξj , C

(k)
ij =

j−1∑
ξ=i+1

W
(k)
iξ V

(ck+2)
ξj ,

and the expression of B
(k)
ij involves just blocks of V (k) which lie on the left of and

below the block V
(k)
ij , while the expression of C

(k)
ij involves just blocks of W (k) and

V (ck+2) which lie on the left of and below the block W
(k)
ij . We recall that all void

sums should be understood as zero.

Putting together relations (2.8) and (2.9), Greco and Iannazzo deduce an algo-
rithm for computing primary matrix roots whose asymptotic computational cost is
O(n3 log2 p+ n2p) ops, which is smaller than the asymptotic cost of the algorithm of
Smith. However, the linear dependence on p, even if multiplied by n2, is bothering.

In the next section we explain how to use (2.8) and (2.9) in order to obtain an
algorithm for computing matrix roots whose computational cost is of O(n3 log2 p) ops.

2.3. The new algorithm. Following the idea of Smith and the construction of
Greco and Iannazzo, we derive for each 1 � i < j � σ formula (2.12), which relates
the block Yij to Tij and to the blocks of the matrices V (k) and W (k) lying on the left
of and below the block on position (i, j) together with the diagonal blocks of Y k for
k = 1, . . . , p. In this way, the formula can be used as an equation in the unknown Yij .
The novelty with respect to the formulae given by Smith and Greco and Iannazzo
is that it can be evaluated with just O(log2 p) ops, leading to an algorithm which
computes any primary matrix pth root of a n × n matrix with O(n3 log2 p) ops. As
in section 2.1 we assume that T is upper quasi-triangular and that the required pth
root function is real.



800 BRUNO IANNAZZO AND CARLO MANASSE

The diagonal blocks of Y and of the matrices V (k) and W (k) can be obtained
directly (using the argument of sections 2.1 and 2.2), so we focus on the off-diagonal
blocks.

Consider first the case p = 2s and the sequence (2.6) of matrices V (k), where
V (1) = I, V (2) = Y is the sought pth root and V (s+2) = T is the given matrix. The
recurrence V (k) = V (k−1)V (k−1) can be written for the blocks obtaining the recurrence

(2.8) for V
(k)
ij with B

(k)
ij defined in (2.10).

We consider the block Tij = V
(s+2)
ij . Using (2.8) with k = s + 1, one obtains

an expression for Tij involving V
(s+1)
ij and other blocks on the left of and below the

position (i, j). Then, using (2.8) again, but with k = s, that is, for V
(s+1)
ij , one obtains

an expression involving V
(s)
ij . The substitution can be iterated until the only matrices

of the sequence V
(k)
ij are Yij = V

(2)
ij and Tij = V

(s+2)
ij . The precise formula is given

in the following result.
Theorem 2.1. Let p = 2s � 1, T be an upper quasi-triangular matrix with

blocks Tij, 1 � i, j � σ. Let Y be a primary pth root of T and V (k) = Y 2k−2

for
k = 2, . . . , s+ 2; then for i < j,

(2.11) Tij =

s∑
h=0

2s−h−1∑
�=0

Y 2h�
ii B

(h+1)
ij Y

2s−2h(�+1)
jj ,

where B
(1)
ij = Yij and B

(h)
ij =

∑j−1
ξ=i+1 V

(h)
iξ V

(h)
ξj for h = 2, . . . , s+ 1.

Proof. We prove the formula by induction on s. For s = 0, the formula reduces

to Tij = B
(1)
ij = Yij , which is true since Y = T . We assume that formula (2.11) is

true for p = 2s and we prove that it is true for p = 2s+1:

Tij = V
(s+3)
ij = V

(s+2)
ii V

(s+2)
ij + V

(s+2)
ij V

(s+2)
jj +B

(s+2)
ij

=

s∑
h=0

2s−h−1∑
�=0

(Y 2s+2h�
ii B

(h+1)
ij Y

2s−2h(�+1)
jj + Y 2h�

ii B
(h+1)
ij Y

2s+2s−2h(�+1)
jj ) +B

(s+2)
ij

=
s∑

h=0

⎛⎝2s−h+1−1∑
�=2s−h

Y 2h�
ii B

(h+1)
ij Y

2s+1−2h(�+1)
jj +

2s−h−1∑
�=0

Y 2h�
ii B

(h+1)
ij Y

2s+1−2h(�+1)
jj

⎞⎠
+

2s−(s+1)+1−1∑
�=0

Y 2s+1�
ii B

(s+2)
ij Y

2s+1−2s+1(�+1)
jj

=

s+1∑
h=0

2s−h+1−1∑
�=0

Y 2h�
ii B

(h+1)
ij Y

2s+1−2h(�+1)
jj ,

and the proof is achieved.
Now we turn to the general case. Let p = 2c1 + · · · + 2cm as in section 2.2. In

this case, one should consider both the recurrences V (k) for (2.6) and W (k) for (2.7),
where W (m+1) = T is the given matrix. The recurrences for V (k) and W (k) can be
written for the blocks obtaining the recurrences (2.8) and (2.9), respectively, where

the matrices B
(k)
ij and C

(k)
ij are defined in (2.10).

As before, we consider the block Tij = W
(m+1)
ij . Using (2.9) with k = m, one

obtains an expression involving V
(cm+2)
ij and W

(m)
ij and other blocks on the left and



A SCHUR ALGORITHM FOR POWERS OF MATRICES 801

below the position (i, j). Then, using (2.9) again, but with k = m − 1, one obtains

an expression involving V
(cm+2)
ij , V

(cm−1+2)
ij , and W

(m−1)
ij . The substitution can be

iterated using (2.9) until the only block of the type W
(k)
ij is W

(2)
ij , which is V

(t+1)
ij .

Then, repeatedly using (2.8) one obtains a relation in which the only blocks in position
(i, j) are Yij and Tij .

The procedure seems to be very complicated, since a lot of terms arise during
the substitutions, but fortunately they can be grouped in a very nice way, as in the
following result.

Theorem 2.2. Let p � 1, with dyadic expansion p = 2c1 + 2c2 + · · · + 2cm ,
where c1 > c2 > · · · > cm � 0, and T be an upper quasi-triangular matrix, let Y be

a primary pth root of T , V (k) = Y 2k−2

for k = 1, . . . , s+ 2, where s = c1 = �log2 p�,
and W (k) = Y 2c1+2c2+···+2ck−1

for k = 2, . . . ,m + 1, so that W (m+1) = T ; then for
i < j,

(2.12) Tij =

�log2 p�∑
h=0

� p

2h
�−1∑

�=0

Y 2h�
ii B

(h+1)
ij Y

p−2h(�+1)
jj +

m∑
h=2

C
(h)
ij Y

p−2ch� p

2ch
�

jj ,

where B
(1)
ij = Yij , B

(h)
ij =

∑j−1
ξ=i+1 V

(h)
iξ V

(h)
ξj for h = 2, . . . , s + 1 and C

(h)
ij =∑j−1

ξ=i+1 W
(h)
iξ V

(ch+2)
ξj for h = 2, . . . ,m.

Proof. We prove the theorem by induction on m, the number of nonzero digits
in the binary expansion of p. The case m = 1 is Theorem 2.1. We assume that
formula (2.12) is true for 1 � k � m and we prove that it is true for k = m+ 1. Let
p = 2c1 + · · ·+ 2cm + 2cm+1; then

(2.13) Tij = W
(m+2)
ij = W

(m+1)
ii V

(cm+1+2)
ij +W

(m+1)
ij V

(cm+1+2)
jj + C

(m+1)
ij .

The theorem is true for p′ = p−2cm+1 = 2c1+ · · ·+2cm and for p′′ = 2cm+1 . Observing

that Y
p−2ch� p

2ch
�

jj =
∏m+1

�=h+1 Y
2c�
jj , we have

W
(m+1)
ij =

c1∑
h=0

� p−2
cm+1

2h
�−1∑

�=0

Y 2h�
ii B

(h+1)
ij Y

p−2cm+1−2h(�+1)
jj +

m∑
h=2

C
(h)
ij

m∏
�=h+1

Y 2c�
jj ,

V
(cm+1+2)
ij =

cm+1∑
h=0

2cm+1−h−1∑
�=0

Y 2h�
ii B

(h+1)
ij Y

2cm+1−2h(�+1)
jj .

(2.14)

Putting the formulae (2.14) into (2.13), we get

Tij =

cm+1∑
h=0

2cm+1−h−1∑
�=0

Y p−2cm+1+2h�
ii B

(h+1)
ij Y

2cm+1−2h(�+1)
jj

+

cm+1∑
h=0

� p

2h
�−2cm+1−h−1∑

�=0

Y 2h�
ii B

(h+1)
ij Y

p−2h(�+1)
jj

+

c1∑
h=cm+1+1

� p−2
cm+1

2h
�−1∑

�=0

Y 2h�
ii B

(h+1)
ij Y

p−2h(�+1)
jj +

m+1∑
h=2

C
(h)
ij

m+1∏
�=h+1

Y 2c�
jj ,



802 BRUNO IANNAZZO AND CARLO MANASSE

where we have split the sum involving W
(m+1)
ij . A change of variable in the first

summand of the right-hand side yields

Tij =

cm+1∑
h=0

� p

2h
�−1∑

�=� p

2h
�−2cm+1−h

Y
p−2h� p

2h
�+2h�

ii B
(h+1)
ij Y

2h� p

2h
�−2h(�+1)

jj

+

cm+1∑
h=0

� p

2h
�−2cm+1−h−1∑

�=0

Y 2h�
ii B

(h+1)
ij Y

p−2h(�+1)
jj

+

c1∑
h=cm+1+1

� p

2h
�−1∑

�=0

Y 2h�
ii B

(h+1)
ij Y

p−2h(�+1)
jj +

m+1∑
h=2

C
(h)
ij

m+1∏
�=h+1

Y 2c�
jj

=

c1∑
h=0

� p

2h
�−1∑

�=0

Y 2h�
ii B

(h+1)
ij Y

p−2h(�+1)
jj +

m+1∑
h=2

C
(h)
ij

m+1∏
�=h+1

Y 2c�
jj ,

which is the desired result. We have used the fact that �p−2cm+1

2h
� = � p

2h
� for h =

cm+1 + 1, . . . , c1 and 2h� p
2h � = p for h = 0, . . . , cm+1.

Equation (2.12) can be used to compute Y from T ; in fact, isolating the terms

containing Yij (which is B
(1)
ij ) one has

p−1∑
�=0

Y �
iiYijY

p−�−1
jj = Tij −

c1∑
h=1

� p

2h
�−1∑

�=0

Y 2h�
ii B

(h+1)
ij Y

p−2h(�+1)
jj −

m∑
h=2

C
(h)
ij

m∏
�=h+1

Y 2c�
jj ,

which, using Kronecker notation, can be rewritten as the linear system

(
p−1∑
�=0

(Y T
jj )

p−�−1 ⊗ Y �
ii

)
vec(Yij) = vec(Tij)−

�log2 p�∑
h=1

⎛⎝� p

2h
�−1∑

�=0

(Y T
jj )

p−2h(�+1) ⊗ Y 2h�
ii

⎞⎠
(2.15)

× vec(B
(h+1)
ij )− vec

(
m∑

h=2

C
(h)
ij

m∏
�=h+1

Y 2c�
jj

)
,

where, besides Yij and Tij , all quantities are blocks of the matrices V (k) and W (h)

lying below or left of the position (i, j) or are diagonal blocks of Y k for k = 0, . . . , p.
Thus, the system (2.15) is useful for computing the matrix Y , a column at a time,
from the diagonal up to the first line, as in the customary Schur recurrence method
of Smith described in section 2.1.

The matrix coefficient is a sum of p terms; moreover, the right-hand side is a sum
of about p terms. Nevertheless, the special form in which the linear system is given
allows one to devise an algorithm which computes the coefficient of the linear system
and the right-hand side with a number of arithmetic operations whose dependence on
p is log2 p.

With this objective in mind, we rewrite the linear system (2.15) in a more compact
form defining

(2.16) M
(h)
ij :=

� p

2h
�−1∑

�=0

(Y T
jj )

p−2h(�+1) ⊗ Y 2h�
ii , U

(h)
jj =

m∏
�=h

Y 2c�
jj ,



A SCHUR ALGORITHM FOR POWERS OF MATRICES 803

so that the system to be solved, for i < j, becomes

(2.17) M
(0)
ij vec(Yij) = vec(Tij)−

�log2 p�∑
h=1

M
(h)
ij vec(B

(h+1)
ij )− vec

( m∑
h=2

C
(h)
ij U

(h+1)
jj

)
.

We provide the new algorithm, leaving a small debt which will be paid in section

2.3.1, which shows how to obtain together all the values M
(h)
ij for h = 0, . . . , �log2 p�

with O(log2 p) ops. The values t,m, and ch are defined in (2.4) and (2.5).

Algorithm 1. Given an upper quasi-triangular matrix T with blocks Tij , 1 �
i, j � σ, and a real primary pth root function ϕ(z), compute ϕ(T ) using only real
arithmetic:

1. for j = 1, . . . , σ,

2. set V
(1)
jj = I, compute V

(2)
jj = Yjj = ϕ(Tjj), and compute V

(h)
jj = Y 2h−2

jj , for

h = 3, . . . , t+ 1, using V
(h)
jj = (V

(h−1)
jj )2;

3. set W
(1)
jj = I, W

(2)
jj = V

(t+1)
jj , and compute W

(h)
jj , for h = 3, . . . ,m, using

W
(h)
jj = W

(h−1)
jj V

(ch−1+2)
jj , set W

(m+1)
jj = Tjj ;

4. set U
(m+1)
jj = I, U

(m)
jj = V

(cm+2)
jj , and compute U

(h)
jj , for h = m − 1, . . . , 2,

using U
(h)
jj = U

(h+1)
jj V

(ch+2)
jj , set U

(1)
jj = Tjj ;

5. for i = j − 1, j − 2, . . . , 1

6. compute B
(h)
ij , for h = 2, . . . , t, and C

(h)
ij , for h = 2, . . . ,m, using (2.10);

7. compute M
(h)
ij for h = 0, . . . , t− 1, using Algorithm 3 of section 2.3.1;

8. compute the right-hand side of (2.17) and solve the linear system for Yij ;

9. compute V
(h)
ij and W

(h)
ij using (2.8) and (2.9).

To determine the computational cost of Algorithm 1, we analyze the cost of the
single steps. We consider first the case in which the matrix T is real upper triangular.

Steps 2, 3, and 4 require about t + 2m ops for each j; step 6 requires 2(j − i −
1)(t + m − 2) ops for each i < j; steps 7 and 8 require about 2(t + m) ops each
for each i < j; finally, step 9 requires about 4(t + m) ops for each i < j. Since∑

i<j(j − i − 1) ≈ ∑m
j=2(j

2 − j2/2) ≈ n3/6, the principal part of the total cost

as n and p tend to infinity is C(p, n) = 1
3n

3(t + m − 2), and we have the bounds
1
3n

3�log2 p� � C(p, n) � 2
3n

3 log2 p.

When some of the diagonal blocks of T are 2× 2 matrices, the number of blocks
ranges from 
n

2 � to n − 1. With respect to an upper triangular matrix T , a smaller
number of block operations is performed, but on blocks of sizes at most 2×2, and the
linear systems to be solved are of size at most 4. For this reason the computational
cost of Algorithm 1 for a nontriangular matrix T of size n is a small multiple of the
cost of the same algorithm for an upper triangular matrix T . In the extremal case
where n is even and all diagonal blocks are 2×2, the indices j and i are summed from
1 to n/2, while the cost of a block operation in step 6 is of 12 ops. In summary, in
the block case the asymptotic cost is no larger than about n3 log2 p ops.

2.3.1. Computation of M
(h)
ij . Given i < j, we present an algorithm for com-

puting together all the quantities M
(h)
ij of (2.16) for h = 0, . . . , �log2 p� with a total

cost of O(log2 p) ops.



804 BRUNO IANNAZZO AND CARLO MANASSE

We consider first the scalar case, that is, compute

(2.18) mh :=

� p

2h
�−1∑

�=0

xp−2h(�+1)y2
h�, h = 0, . . . , �log2 p�,

for x, y ∈ C. The matrix case follows easily and will be discussed later. In order to
design an efficient algorithm we need the following result.

Theorem 2.3. Let x, y ∈ C and p = b12
t−1+b22

t−2+· · ·+bt−12+bt be the binary
expansion of p � 1 with b1 = 1 and bi ∈ {0, 1} for i > 1, so that t = �log2 p� + 1.

Define σk = x2k−1

+ y2
k−1

for k = 1, . . . , t and ũk = xp−2k� p

2k
�, w̃k = y2

k+1� p

2k+1 � for
k = 0, . . . , t− 1. Then

(2.19) mh = mh+1σh+1 + bt−hũhw̃h, h = 0, . . . , t− 2,

while mt−1 = b1ũt−1w̃t−1 = ũt−1 = xp−2t−1

.
Proof. The formula for mt−1 can be verified directly. To prove the inductive step,

observe that for any sequence {a�}� and 0 � h � t− 1, we have

� p

2h
�−1∑

�=0

a� =

� p

2h+1 �−1∑
�=0

(a2� + a2�+1) + bt−ha� p

2h
�−1;

in fact � p
2h
� = 2� p

2h+1 �+ bt−h. Using the aforementioned decomposition, for h < t− 1
we have

mh =

� p

2h
�−1∑

�=0

xp−2h(�+1)y2
h�

=

� p

2h+1 �−1∑
�=0

(
xp−2h(2�+1)y2

h(2�) + xp−2h(2�+2)y2
h(2�+1)

)
+ bt−hx

p−2h� p

2h
�y2

h� p

2h
�−2h

= (x2h+ y2
h

)

� p

2h+1 �−1∑
�=0

xp−2h+1(�+1)y2
h+1� + bt−hũhw̃h = mh+1σh+1 + bt−hũhw̃h,

and the proof is completed, where we have used 2h� p
2h
�− 2hbt−h = 2h+1� p

2h+1 �.
Theorem 2.3 allows one to compute all the values of mh for h = 0, . . . , t− 1 with

an algorithm which performs O(log2 p) ops.
Algorithm 2. Given x, y ∈ C and p � 1, compute mh as in (2.18) with O(log2 p)

ops:

1. compute xh := x2h−1

, yh := y2
h−1

and σh := x2h−1

+ y2
h−1

, using x1 = 1,
y1 = 1, and xh = x2

h−1, yh = y2h−1, for h = 2, . . . , t, σh = xh + yh, for
h = 2, . . . , t− 1;

2. set ũ0 = 1 and compute ũk = xp−2k� p

2k
�, as

ũk = xbt+bt−12+···+bt−k+12
k−1

= xbt+···+bt−k+22
k−2

xbt−k+12
k−1

= ũk−1x
bt−k+1

k

for k = 1, . . . , t− 1;



A SCHUR ALGORITHM FOR POWERS OF MATRICES 805

3. set w̃t−1 = 1 and compute w̃k = y2
k+1� p

2k+1 �, as

w̃k = ybt−k−12
k+1+···+b22

t−2+2t−1

= ybt−k−12
k+1

ybt−k−22
k+2+···+b12

t−1

= w̃k+1y
bt−k−1

k+2 .

for k = t− 2, . . . , 1, 0;
4. set mt−1 = ũt−1 and compute mh using formula (2.19) for h = t− 2, . . . , 1, 0.

The computational cost of the method is bounded by 8 log2 p ops.

In Theorem 2.3 the commutativity between x and y has not been used; thus the
statement is true also when x and y are square matrices and (2.18) is written as

(2.20) mh :=

� p

2h
�−1∑

�=0

xp−2h(�+1) ⊗ y2
h�, h = 0, . . . , �log2 p�.

Equation (2.16) is a special case of (2.20). We have the following corollary of
Theorem 2.3.

Corollary 2.4. Let x ∈ Cn×n and y ∈ Cm×m and let p be as in Theorem 2.3.

Define σk = x2k−1⊗Im+In⊗y2
k−1

, ũk = xp−2k� p

2k
�, w̃k = y2

k+1� p

2k+1 � for k = 1, . . . t.
Then for mh in (2.20), the following recurrence holds:

(2.21) mh = mh+1σh+1 + bt−hũh ⊗ w̃h, h = 0, . . . , t− 2,

with mt−1 = ũt−1 ⊗ Im = xp−2t−1 ⊗ Im.

Algorithm 2 for computing mh is easily generalized to matrices. It is enough
to initialize the sequences with identity matrices, namely, x1 = In, y1 = Im, σ1 =
2In ⊗ Im, w̃t−1 = In, ũ0 = Im, and to set σh = xh ⊗ Im + In ⊗ yh, where mh is
obtained through formula (2.21) with mt−1 = ũt−1 ⊗ In.

Algorithm 2 can be used to compute the values of M
(h)
ij which are needed by

step 7 of Algorithm 1 of section 2.3. However, in this case we can save computation
since most of the quantities are already known from the previous steps. We restate
a specialized Algorithm 2 for this problem, recalling that in our case x = Y T

jj and
y = Yii.

Algorithm 3. Compute M
(h)
ij in Algorithm 1, where si and sj are the sizes of

the blocks Vii and Vjj , respectively:

1. set xh = (V
(h+1)
jj )T , yh = V

(h+1)
ii , for h = 0, . . . , t;

2. compute σh = xh ⊗ Isi + Isj ⊗ yh, for h = 0, . . . , t;

3. set ũ0 = Isj , ũh = (U
(θ)
jj )T , where θ = 1+b1+b2+· · ·+bt−h, for h = 1, . . . , t−1;

4. set w̃t−1 = Isi , w̃h = W
(θ)
ii , where θ = 1 + b1 + b2 + · · · + bt−h−1, for h =

0, . . . , t− 2;

5. compute M
(t−1)
ij = ũt−1⊗ Isi , and M

(h)
ij , for h = t− 2, . . . , 1, 0, using formula

(2.21).

Algorithm 3 requires a computation just in step 2, where in the scalar case about
t sums are required, and step 5, where in the scalar case about t+ μ products and μ
sums are required, where μ is the number of nonzero digits in the binary expansion
of p.



806 BRUNO IANNAZZO AND CARLO MANASSE

2.3.2. Generalizations and special cases. The Schur logarithmic algorithm
can be used also for a generic nonsingular complex matrix A and for a generic primary
pth root function ϕ(z). The formulae given in the previous section still hold and are
much more simple, since in the complex Schur form all blocks are 1× 1 and thus the
linear system is in fact a linear equation. In this case complex arithmetic is used, but
the complexity is roughly the same.

Now we discuss how the complex version of our algorithm compares with the
other Schur algorithms for small values of p. We slightly change the notation with
respect to the previous sections, using lower case letters for scalar complex quantities.

In the complex case, for instance, the linear system to be solved to get yij is
always a scalar equation which can be written as

yij =
tij −

∑�log2 p�
h=1 m

(h)
ij b

(h+1)
ij −∑m

h=2 c
(h)
ij u

(h+1)
jj

m
(0)
ij

with m
(h)
ij =

∑� p

2h
�−1

�=0 y2
h�

ii y
p−2h(�+1)
jj .

We describe Algorithm 1 for triangular matrices and for small values of p, con-
sidering for simplicity just the principal pth root. We recall that in finite arithmetic
a different order in the evaluation of the same quantity may lead to different results.

• For p = 2 we have t = 2, b2 = 0, m = 1. For each j we must compute

v
(2)
jj = t

1/2
jj and for each i < j we must compute b

(2)
ij =

∑j−1
k=i+1 yikykj and

thus m
(1)
ij = 1, m

(0)
ij = yii + yjj and

yij =
tij −

∑j−1
k=i+1 yikykj

yii + yjj
.

This is the same relation used by the Björck and Hammarling algorithm [1].
Thus, our method generalizes the Björck and Hammarling algorithm (and the
algorithm of Higham [6] in the real case).

• For p = 3 we have t = 2, b2 = 1, m = 2. For each j we must compute

yjj = v
(2)
jj = t

1/3
jj , v

(3)
jj = (v

(2)
jj )2, and for each i < j we must compute

b
(2)
ij =

∑j−1
k=i+1 yikykj , and c

(2)
ij =

∑j−1
k=i+1 v

(3)
ik ykj . Thus, m

(1)
ij = yjj , m

(0)
ij =

yjj(yii + yjj) + y2ii and

yij =
tij − yjj

∑j−1
k=i+1 yikykj −

∑j−1
k=i+1 v

(3)
ik ykj

yjj(yii + yjj) + y2ii
.

This is the recurrence obtained by the Smith algorithm [13] modified in such
a way that V (k+1) = V (k)Y (instead of V (k+1) = Y V (k)). Thus, for p = 3
our algorithm essentially coincides with the one of Smith.

• For p = 4 we have t = 3, b2 = 0, b3 = 0, m = 1. For each j we must

compute yjj = v
(2)
jj = t

1/4
jj , v

(3)
jj = (v

(2)
jj )2, and for each i < j we must

compute b
(2)
ij =

∑j−1
k=i+1 yikykj , b

(3)
ij =

∑j−1
k=i+1 v

(3)
ik v

(3)
kj and thus m

(2)
ij = 1,

m
(1)
ij = v

(2)
ii + v

(2)
jj , m

(0)
ij = m

(1)
ij (yii + yjj). We have

yij =
tij −m

(1)
ij b

(2)
ij − b

(3)
ij

m
(0)
ij

.



A SCHUR ALGORITHM FOR POWERS OF MATRICES 807

We discuss how this algorithm for the fourth root of a matrix compares with
two recalls of the Björck and Hammarling algorithm. The two algorithms are

similar, since the quantities b
(2)
ij and b

(3)
ij of our algorithm must be computed

also by the Björck and Hammarling algorithm and so the most expensive
part of the computation is the same for both algorithms. However, they are
different, in fact, in the preliminary step; our algorithm computes yjj , the

fourth root of tjj , and then the square of yjj , namely, v
(2)
jj , for each j, while

two Björck and Hammarling executions compute v
(2)
jj and then its square root,

that is, yjj . Moreover, the formulae for yij in the two algorithms correspond
essentially to the two evaluations

yij =
tij − (y2ii + y2jj)b

(2)
ij − b

(3)
ij

(y2ii + y2jj)(yii + yjj)
, yij =

tij−b
(3)
ij

y2
ii+y2

jj
− b

(2)
ij

yii + yjj
,

where the former formula is the one used in our algorithm and is computed
with 7 ops (we assume y2ii and y2jj are known) and the second is the one ob-
tained by two steps of the Björck and Hammarling algorithm and is computed

with 6 ops. Finally, our algorithm requires the computation of v
(2)
ij , which

needs 5 more ops.
In summary, our algorithm requires about 3n2 ops more than two steps of
the Björck and Hammarling algorithm. This extra cost, for a sufficiently
large n, is negligible with respect to n3 and thus we can conclude that the
performances of the two algorithms are essentially the same.

• For p = 5 the new algorithm is different from the Smith algorithm since it
requires less intermediate matrices and gives a good advantage. It also takes
advantage with respect to the algorithm of Greco and Iannazzo [2], since for
each i, it does not require the powers y2ii, y

3
ii, and y4ii to derive yij but just

y2ii, y
4
ii.

For p = 2k the same argument as for p = 4 allows one to conclude that our
algorithm and k consecutive steps of the Björck and Hammarling algorithm require

about n3

3 log2 p, with a slightly larger total count in O(n3) terms for our algorithm.
It is worth pointing out that for the memory required, the Björck and Hammarling
algorithm is preferable since it does not require the storage of all 2sth powers of Y
for s = 2, . . . , k. On the other hand, if a nonprincipal root is required, it may be
more difficult to choose the right determination using the Björck and Hammarling
algorithm.

Another generalization of the Schur logarithmic method is to block upper trian-
gular matrices. In fact, in the construction of the formulae and in the algorithm, the
hypothesis that T is upper quasi-triangular can be substituted with the hypothesis
that T is block upper triangular. Nevertheless, block upper triangular is more com-
plicated since there is no such simple formula as (2.2) to compute ϕ(Tjj) for a generic
block of size greater than 1.

2.3.3. To use or not to use the factorization of p. If p = p1p2, then the
relation Y 1/p = (Y 1/p1)1/p2 implies that the principal pth root of Y can be computed
in two steps: first, compute the p1th root of Y ; then, compute the p2th root of Y 1/p1 .
If a factorization of p is known and we use this trick, that is, we choose to compute the
pth root of Y by computing a sequence of roots of smaller indices corresponding to
the factors of p, then we say that we use the factorization of p. For Smith’s method,



808 BRUNO IANNAZZO AND CARLO MANASSE

using the factorization gives a great advantage, since the computational cost depends
polynomially on p.

In our logarithmic method, if p = p1p2, since log p = log p1 + log p2, we do not
expect a great advantage in terms of the computational cost when the factorization
is used. In fact, if p has tp binary digits, mp of which are nonzero, the computational
cost is 1

3 (tp +mp − 2)n3 + o(n3) ops and this leads to three possibilities:

• using the factorization is indifferent, e.g., p = 2k, where tp+mp−2 = tp−1 =
k = k(t2 +m2 − 2);

• using the factorization is convenient, e.g., p = 15, where tp +mp − 2 = 6 >
5 = (t3 +m3 − 2) + (t5 +m5 − 2);

• using the factorization is not convenient, e.g., p = 33, where tp +mp − 2 =
6 < 7 = (t3 +m3 − 2) + (t11 +m11 − 2).

Analyzing the positive integers from 2 to 105, we have counted 35, 964 cases in
which using the factorization is indifferent, 42, 698 cases where using the factorization
is convenient, and 22, 237 cases where using the factorization is not convenient.

So there is no clear advantage in using the factorization of p, and the strategy can
be decided case by case. However, an aspect that could suggest the use of factorization
is the gain in terms of memory required, since fewer intermediate matrices need to be
stored if the factorization is used.

2.4. Arbitrary powers of a matrix. Consider a primary q
p th power Z of A.

The matrix Z can be written as Z = Xq, where X is the corresponding primary pth
root of A. The trivial algorithm for computing the desired primary q

p th power of A
is to compute the pth root X and then raise it to the power q.

A more interesting implementation is obtained using a Schur form of A, namely,
A = QTQ∗, and computing using Algorithm 1 the desired primary pth root of A, say,
Y = Q∗XQ. Computing the qth power of Y yields the desired power of A.

The step of raising Y to the power q is implemented using the matrices V (k) =

Y 2k−2

of Algorithm 1 and the dyadic expansion of q, say,

q = 2d1 + 2d2 + · · ·+ 2dg , d1 > d2 > · · · > dg � 0.

Let Z(1) = V (d1+2) = Y 2d1 and define Z(k) = Z(k−1)V (dk+2) = Z(k−1)Y 2dk for
k = 2, . . . , g. We have Y q = Z(g). The computation of Z(g) could be made using the
known powers of Y and requires, in the worst case, g − 1 = O(log2 p) multiplications
of upper quasi-triangular matrices.

For an irrational α ∈ (0, 1), it is possible to approximate α by a suitable rational
number q

p (using, for instance, the continued fraction expansion of α) and then use

Algorithm 1 of section 2.3 to compute A
q
p as an approximation of Aα.

Observe that given a rational approximation q
p of an irrational number α, just

p primary q
p th powers exist, while there is an infinite number of primary powers

of A to α. We can conclude that when we approximate a primary power, we are
approximating at the same time infinitely many other primary powers.

However, this approach seems to be of limited use, since it introduces a new
source of ill-conditioning (the pth root computation) which for large p and q can be
much greater than the conditioning of the power. When A has no nonpositive real
eigenvalues and the principal power Aα is required, then unless α is approximated
with a fraction q/p with small values of p and q, it is convenient to use another
approach as, for instance, the algorithm of Higham and Lin [9].



A SCHUR ALGORITHM FOR POWERS OF MATRICES 809

3. Numerical tests. We present some numerical tests to illustrate the behavior
of Algorithm 1 in finite arithmetic. The tests have been performed using MATLAB
R2011b with unit roundoff 2−53 ≈ 1.1× 10−16.

Comparisons have been made between our algorithm (pthroot_log) and some
existing algorithms for matrix powers. For the Smith method [13], we have used
the implementation rootpm_real of Higham’s matrix function toolbox [5], while for
the Schur–Padé [9] method we have used the authors’ script powerm_pade. For the
other algorithms, namely, the Greco–Iannazzo method [2], the Schur–Halley method
[11], and the explog method, that is, using the formula Aα = eα logA, we have used
our implementations. The scripts for MATLAB and Octave are available at the first
author’s personal webpage.

We compare the performance of the algorithms on some test matrices. In partic-
ular the accuracy of the pth root computation is estimated in terms of the quantity

(3.1) ρA(X̃) :=
‖A− X̃p‖

‖X̃‖
∥∥∥∑p−1

i=0 (X̃
p−1−i)T ⊗ X̃ i

∥∥∥ ,
where X̃ is the computed pth root of A and ‖ · ‖ is any matrix norm. (In our tests we
use the spectral norm.) In [7], the quantity ρA is proved to be a measure of accuracy

more realistic than the norm of the relative residual, say, ‖X̃p −A‖/‖A‖.
Test 1. In section 2.3 we have shown that the computational cost of Algorithm 1

for an upper quasi-triangular matrix is θn3 log2 p with θ � 1, where the precise value
of θ depends on the number of 2 × 2 blocks and on the number of nonzero digits in
the binary expansion of p.

To highlight the logarithmic dependence of Algorithm 1 on p we compute the
principal pth root for 10 � p � 300 of an upper quasi-triangular matrix with no
nonpositive real eigenvalues. (The matrix has been randomly chosen once and for
all.) The CPU time for any value of p is shown in Figure 3.1. The curve has a
logarithmic trend with a lot of oscillations due to the fact that the computational
cost of Algorithm 1 depends on the number of ones in the binary expansion of p with
low peaks for p = 2k and high peaks for p = 2k − 1.

We have also computed the principal pth root with Algorithm 1 but using the
factorization of p, as discussed in section 2.3.3. The timing is generally greater than
or equal to the one obtained without using the factorization.

Test 2. As in [9, Experiment 1], we consider the matrix

A(ε) =

[
1 1
0 1 + ε

]
,

with ε = 10−t, whose eigenvectors become very ill-conditioned as ε tends to 0. We
compute the power A(ε)q/p for (q, p) ∈ {(1, 10), (1, 2), (9, 10)} and with 65 equally
spaced values of t ∈ [0, 16]. For all these values, the conditioning of the matrix
power κxp(A(ε)) (as defined in [9]) is of the order 1. Using the eigendecomposi-
tion of A(ε), say, A(ε) = M diag

(
λ1(ε), λ2(ε)

)
M−1, that is, computing A(ε)q/p =

M diag
(
λ1(ε)

q/p, λ2(ε)
q/p
)
M−1, yields poor results as ε tends to 0. As a measure of

the error we consider the quantity ‖X̃−A(ε)q/p‖/‖A(ε)q/p‖, where X̃ is the computed
value of A(ε)q/p and the “exact” value M(diag(λ1(ε)

q/p, λ2(ε)
q/p)M−1 is computed

using VPA in MATLAB.
Using Algorithm 1 gives an error bounded by 4u, showing that it is insensitive to

the eigenconditioning.



810 BRUNO IANNAZZO AND CARLO MANASSE

50 100 150 200 250 300

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Fig. 3.1. The CPU time (in seconds) required by Algorithm 1 to compute the principal pth root
of a random 50 × 50 upper quasi-triangular matrix for certain values of p.

Test 3. As in [9], we select among the classical test matrices from the MATLAB
gallery function and the matrix computation toolbox a number of 10× 10 matrices
with no nonpositive real eigenvalues and we compute their principal pth root for
p = 2, 3, 12, 52. We compare the residuals obtained using (3.1). As one can see in
Figure 3.2, the numerical results of Algorithm 1 are very good and often coincide with
the ones of the customary Schur algorithm. They compare very well with the other
algorithms.

Test 4. Algorithm 1 can be used to compute all primary pth roots of a given
matrix A. We consider the matrix

(3.2) A =

[
a 1
0 b

]
for various a, b 
∈ (−∞, 0] and a 
= b. All p2 primary pth roots of A are given
symbolically by

Xk,h =

⎡⎢⎣ωk−1a1/p
ωh−1b1/p − ωk−1a1/p

b− a

0 ωh−1b1/p

⎤⎥⎦ , k, h = 1, . . . , p,

where ω = e2iπ/p and a1/p and b1/p are the principal pth roots of a and b, respectively.
For each computed pth root X̃k,h we compute the relative residual res(X̃k,h) =

‖X̃p
k,h − A‖/‖A‖, the value ρA(X̃k,h) of (3.1), and the relative error err(X̃k,h) =

‖X̃k,h −Xk,h‖/‖Xk,h‖, where Xk,h is computed using VPA in MATLAB with a suf-
ficient number of digits such that it is exact (up to machine precision); finally we

compute the quantity β(X̃k,h) = ‖X̃k,h‖p/‖A‖, which has been introduced in [6, 13]
as a measure of stability.



A SCHUR ALGORITHM FOR POWERS OF MATRICES 811

0 5 10 15 20 25 30 35 40 45

10
−16

10
−15

10
−14

phtroot−log
schur−custom
powerm−pade
exp−log
schur−halley

Fig. 3.2. Comparison, in terms of relative residual, of the performance of various algorithms
for computing the principal pth root for p = 2, 3, 12, 52 of certain test matrices.

For a and b not too close, Algorithm 1 computes with good accuracy all primary
roots. For instance, we run the algorithm for (a, b) ∈ {(1, 2), (ε, 1/ε), (1 + i, 1 − i)}
(with ε = 10−8) and for p ∈ {3, 5, 11} and we get an error always smaller than 23u

and a value of ρA(X̃) always smaller than 2u. For larger values of p these errors grow:
for p = 53 we get a maximum error of about 350u.

For a ≈ b and choosing different determinations for the roots of a and b, that is,
choose k 
= h, the value of β(X̃k,h) becomes very large, highlighting ill-conditioning
of the computed root; this captures the fact that in the limit case, for a = b, choosing
different determinations yields a nonprimary pth root. The numerical results for a = 1
and b = 1 − ε, with ε = 10−8, are given in Table 3.1. As one can see, for k 
= h,
the value ρ(X̃) is not a good measure of accuracy anymore, since in this case one
of the matrices appearing in the denominator of (3.1) has very small norm. Moreover,

the error in computing the pth root degrades, according to β(X̃k,h)
1/p. Unfortunately,

this is the best that can be done numerically in the generic case, as discussed in [6, 13].
Along the diagonal of Table 3.1, that is, computing the same determination for near
eigenvalues, one can see that the computation gives good results.

Test 5. We try to understand how Algorithm 1, provided with the modifications
described in section 2.4, works with fractional powers of a matrix. We consider the
matrix A = MDM−1 with D = diag([1 2 3]) and

M =

⎡⎣ 1 1 1
1 2 3
−3 −2 1

⎤⎦ .

For p = 5, 11, 31, 101, we use Algorithm 1 and the Schur–Padé algorithm to

compute the powers A
q/p
i for 1 � q � p − 1 and evaluate the relative errors

‖X̃ − A
q/p
i ‖/‖Aq/p

i ‖, where X̃ is the computed value of A
q/p
i and the “exact” value



812 BRUNO IANNAZZO AND CARLO MANASSE

Table 3.1

Various measures of accuracy in computing all third roots of the matrix A of (3.2) with a = 1
and b = 1− 10−8; k and h are the determination chosen for the third root of a and b, respectively.

h\k 1 2 3

1 res( ˜X1,1) = 9.7 · 10−17 res( ˜X1,2) = 2.1 · 10−8 res( ˜X1,3) = 1.3 · 10−8

err( ˜X1,1) = 0 err( ˜X1,2) = 6.4 · 10−8 err( ˜X1,3) = 1.2 · 10−7

ρA( ˜X1,1) = 3.2 · 10−17 ρA( ˜X1,2) = 6.4 · 10−33 ρA( ˜X1,3) = 4.0 · 10−33

β( ˜X1,1) = 1.0 β( ˜X1,2) = 3.2 · 1024 β( ˜X1,3) = 3.2 · 1024
2 res( ˜X2,1) = 9.2 · 10−9 res( ˜X2,2) = 4.2 · 10−16 res( ˜X2,3) = 1.8 · 10−8

err( ˜X2,1) = 6.0 · 10−8 err( ˜X2,2) = 2.7 · 10−16 err( ˜X2,3) = 6.5 · 10−8

ρA( ˜X2,1) = 2.9 · 10−33 ρA( ˜X2,2) = 1.4 · 10−16 ρA( ˜X2,3) = 5.7 · 10−33

β( ˜X2,1) = 3.2 · 1024 β( ˜X2,2) = 1.0 β( ˜X2,3) = 3.2 · 1024
3 res( ˜X3,1) = 2.8 · 10−8 res( ˜X3,2) = 9.2 · 10−9 res( ˜X3,3) = 8.1 · 10−16

err( ˜X3,1) = 1.2 · 10−7 err( ˜X3,2) = 5.9 · 10−8 err( ˜X3,3) = 5.1 · 10−16

ρA( ˜X3,1) = 8.6 · 10−33 ρA( ˜X3,2) = 2.9 · 10−33 ρA( ˜X3,3) = 2.7 · 10−16

β( ˜X3,1) = 3.2 · 1024 β( ˜X3,2) = 3.2 · 1024 β( ˜X3,3) = 1.0

MDq/pM−1 is computed using VPA in MATLAB. The results are drawn in Figure 3.3,
where the dashed line represents the error for Algorithm 1, while the continuous line
represents the error for the Schur–Padé algorithm.

As one can see, for moderate values of q, our algorithm shows a good accuracy,
which unfortunately degrades as q becomes large. For this reason we recommend the
use of our algorithm just for moderate values of q.

1 2 3 4
10−16

10−15

10−14

p=5
2 4 6 8 10

10−16

10−15

10−14

p=11

5 10 15 20 25 30
10−16

10−15

10−14

p=31
20 40 60 80 100

10−16

10−15

10−14

p=101

Fig. 3.3. The relative errors in the computation of Aq/p, with A as in Test 5, using Algorithm 1
(dashed line) and the Schur–Padé algorithm (continuous line) for 1 � q � p− 1.



A SCHUR ALGORITHM FOR POWERS OF MATRICES 813

4. Conclusions. We have presented a new Schur algorithm for computing ma-
trix roots. A crude comparison of the computational costs shows that for an upper
triangular matrix, Algorithm 1 is faster than the other existing algorithms in most of
the interesting cases. For instance, for matrices with real eigenvalues the cost of our
algorithm is θn3 log2 p with θ � 2

3 , while the cost of the Schur–Padé algorithm [9] is
kn3, where k is usually larger than 7; this makes our algorithm cheaper, at least for
moderate values of p.

Concerning numerical stability, the new algorithm has shown in all our experi-
ments the same stability properties as the customary Schur method. Nevertheless, an
analysis of the numerical stability is yet to be given.

All these properties make the method reliable for the computation of matrix roots.
It can be also considered for the computation of fractional powers of the kind Aα with
α ∈ (0, 1) well approximated by a fraction p/q with small p and q.

Acknowledgments. We wish to thank the anonymous referees for their remarks,
which enabled us to improve the presentation of the paper.

REFERENCES

[1] Ȧ. Björck and S. Hammarling, A Schur method for the square root of a matrix, Linear
Algebra Appl., 52/53 (1983), pp. 127–140.

[2] F. Greco and B. Iannazzo, A binary powering Schur algorithm for computing primary matrix
roots, Numer. Algorithms, 55 (2010), pp. 59–78.

[3] C.-H. Guo, On Newton’s method and Halley’s method for the principal pth root of a matrix,
Linear Algebra Appl., 432 (2010), pp. 1905–1922.

[4] C.-H. Guo and N. J. Higham, A Schur-Newton method for the matrix pth root and its inverse,
SIAM J. Matrix Anal. Appl., 28 (2006), pp. 788–804.

[5] N. J. Higham, The Matrix Functions Toolbox. http://www.ma.man.ac.uk/ higham/mctoolbox,
(accessed date: Feb. 2012).

[6] N. J. Higham, Computing real square roots of a real matrix, Linear Algebra Appl., 88/89
(1987), pp. 405–430.

[7] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM Philadelphia, 2008.
[8] N. J. Higham and L. Lin, On pth roots of stochastic matrices, Linear Algebra Appl., 435

(2011), pp. 448–463.
[9] N. J. Higham and L. Lin, A Schur-Padé algorithm for fractional powers of a matrix, SIAM

J. Matrix Anal. Appl., 32 (2011), pp. 1056–1078.
[10] B. Iannazzo, On the Newton method for the matrix pth root, SIAM J. Matrix Anal. Appl., 28

(2006), pp. 503–523.
[11] B. Iannazzo, A family of rational iterations and its application to the computation of the

matrix pth root, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1445–1462.
[12] B. Laszkiewicz and K. Ziȩtak, A Padé family of iterations for the matrix sector function

and the matrix pth root, Numer. Linear Algebra Appl., 16 (2009), pp. 951–970.
[13] M. I. Smith, A Schur algorithm for computing matrix pth roots, SIAM J. Matrix Anal. Appl.,

24 (2003), pp. 971–989.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


